Belmont
Synthesis of Model Predictive Control and Reinforcement Learning: Survey and Classification
Reiter, Rudolf, Hoffmann, Jasper, Reinhardt, Dirk, Messerer, Florian, Baumgärtner, Katrin, Sawant, Shamburaj, Boedecker, Joschka, Diehl, Moritz, Gros, Sebastien
The fields of MPC and RL consider two successful control techniques for Markov decision processes. Both approaches are derived from similar fundamental principles, and both are widely used in practical applications, including robotics, process control, energy systems, and autonomous driving. Despite their similarities, MPC and RL follow distinct paradigms that emerged from diverse communities and different requirements. Various technical discrepancies, particularly the role of an environment model as part of the algorithm, lead to methodologies with nearly complementary advantages. Due to their orthogonal benefits, research interest in combination methods has recently increased significantly, leading to a large and growing set of complex ideas leveraging MPC and RL. This work illuminates the differences, similarities, and fundamentals that allow for different combination algorithms and categorizes existing work accordingly. Particularly, we focus on the versatile actor-critic RL approach as a basis for our categorization and examine how the online optimization approach of MPC can be used to improve the overall closed-loop performance of a policy.
Towards a Universal Theory of Artificial Intelligence based on Algorithmic Probability and Sequential Decision Theory
Decision theory formally solves the problem of rational agents in uncertain worlds if the true environmental probability distribution is known. Solomonoff's theory of universal induction formally solves the problem of sequence prediction for unknown distribution. We unify both theories and give strong arguments that the resulting universal AIXI model behaves optimal in any computable environment. The major drawback of the AIXI model is that it is uncomputable. To overcome this problem, we construct a modified algorithm AIXI^tl, which is still superior to any other time t and space l bounded agent. The computation time of AIXI^tl is of the order t x 2^l.